22.4.17

Euclidea


Dáme que non son o primeiro profesor de Matemáticas que fala do xogo Euclidea, pois eu mesmo xa lin comentarios en twitter hai tempo, calculo que haberá ano e medio. Cando souben por primeira vez del, coido que só había versión para dispositivos móbiles, agora hai tamén versión web. As capturas serán desta última versión.

Que podemos esperar dun xogo chamado Euclidea? Obviamente que sexa un xogo de Xeometría, e tamén é de supoñer que as construcións elementares estean implicadas. E así é: a dinámica do xogo é a da construción con regra e compás das figuras planas, de xeito crecente na dificultade e a sofisticación das ferramentas e dos obxectivos. Pasamos do triángulo equilátero inicial dos Elementos:

  
... a retos máis interesantes nun anaco:

  
Unha característica que mellora a idea esencial do xogo é que en cada figura hai que acadar dous obxectivos: construír a figura co menor número de liñas implicadas e construír a figura co menor número de construcións elementares(rectas e circunferencias). Dous obxectivos que apuntan a dous tipos distintos e complementarios de elegancia matemática.

Para os que estudamos baixo a mal chamada Matemática Moderna, aínda as figuras aparentemente máis sinxelas poden supoñer unha dificultade inusitada, pois a pouca xeometría non analítica que estudamos tiña como único leitmotiv a medida de magnitudes, principalmente lonxitudes. Se houbese un xogo semellante dirixido a facer diagramas de Venn ou aplicacións bixectivas, a miña xeración tería certamente máis facilidade que coas construcións de Euclidea.

Ah, e como o xogo xa é vello se consideramos a cronoloxía en tempos de internet, podedes pedir papas e esculcar os distintos walkthroughs que hai dispoñibles en youtube.

2.4.17

Ambigüidades


O outro día estiven a pensar na notación funcional, na que se presenta certa confusión entre:
  • O xeito que temos de expresar a composición dunha función consigo mesma, $f^2(x)=(f\circ f)(x), f^n(x)=(f\circ f \circ \dotsc \circ f)(x)$
  • A potencia dunha función como produto repetido, $(f \cdot f \cdot f \dotsc \cdot f)(x)$
  • A derivada n-ésima da función, $f^{(n)}(x)$, que en valores constantes de n adoita aparecer en números romanos, $f^{IV}(x)$
Por se fose pouco, a convención de que o índice $^n$ representa a composición e non a potencia non se conserva no contexto da trigonometría, onde:

$sen^2(x)=sen(x) \cdot sen(x)$ 

e a composición simplemente non ten abreviatura e escribimos, por exemplo:

$sen(sen(sen(x)))$

Pois ben, isto levoume a considerar os casos nos que a notación que utilizamos é ambigua, no sentido seguinte:

Que notación, utilizada de xeito estándar a nivel 4º de ESO, supón que se a escribimos no encerado da aula, os alumnos non poden estar seguros de como a deben ler?

Eu teño en mente a coincidencia de dous conceptos concretos, mais estou certo de que vós coñeceredes máis.

26.3.17

LIII Olimpiada Matemática Española



Esta fin de semana celebrouse en Alcalá de Henares a LIII Olimpíada Matemática Española para alumnos de bacharelato. Souben dos problemas que caeron nun grupo de profesores de Matemáticas no que participo en Facebook, e non puiden evitar roerlle ao primeiro, que adoita ser o máis sinxelo, e que este ano tiña que ver con números naturais. Observade:

Determina o número de valores distintos da expresión
$$\frac{n^2-2}{n^2-n+2}$$
onde $n \in \{1,2,3,\dots,100\}$

Por variar un pouco, vou compartir a solución que atopei; e para que non vexades a miña solución antes de terdes oportunidade de pensar unha vós mesmos, déixovos unha interesante figura que vin en xaneiro en futility closet:


Ide a Futility Closet por máis información

Eis a solución:

A estratexia vai consistir en calcular os valores distintos do 1 ao 100 que teñen a mesma imaxe pola función $f(n)=\frac{n^2-2}{n^2-n+2}$

O certo é que resulta máis sinxelo do que vaticinei ao ver a expresión. Supoñamos que n e m son valores distintos entre 1 e 100 que cumpren que $f(n)=f(m)$. Entón:

$$\frac{n^2-2}{n^2-n+2}=\frac{m^2-2}{m^2-m+2}$$
$$(n^2-2)(m^2-m+2)=(n^2-n+2)(m^2-2)  $$
$$n^2m^2-n^2m+2n^2-2m^2+2m-4=n^2m^2-2n^2-nm^2+2n+2m^2-4 $$
$$nm^2-n^2m+4n^2-4m^2+2m-2n=0 $$
$$nm(m-n)+4(n+m)(n-m)+2(m-n)=0 $$
$$ (m-n)[nm-4(n+m)+2]=0 $$ 
Como n e m son distintos, o segundo factor ten que anularse:
$$nm-4n-4m+2=0$$
Esta ecuación pode resolverse de varios xeitos, por exemplo despexando unha das incógnitas e impoñendo posteriormente que tome valores naturais, mais observando a simetría do polinomio é máis limpo así:
$$(n-4)(m-4)-14=0 \rightarrow (n-4)(m-4)=14 $$
$$\Longrightarrow \begin{cases} \begin{cases}n-4=14 \\ m-4=1 \end{cases} \\ \ \ \ ou \\ \begin{cases}n-4=7 \\ m-4=2 \end{cases} \end{cases} $$
A priori podería haber divisores negativos de 14, p.ex. $n-4=-2$, pero provocaría que o outro factor fose $m-4=-7$ e por tanto m non sería natural.
En conclusión, só temos as solucións $$(n,m)=(18,5) \ e  \ (n,m)=(11,6)$$
Isto implica que todos os números do 1 ao 100 dan valores distintos da función f(n) agás estas dúas parellas, polo que hai 98 valores distintos

11.3.17

Divertimento xeométrico(7)


Revisando o fantástico libro de Ross Honsberger Mathematical Gems II (táboa de contidos en Cut the Knot) atopei esta propiedade dos triángulos.
Como é usual nos divertimentos, non vou explicar nada; tócavos a vós adiviñar que sucede na figura:



9.3.17

A voltas co octógono


Na anterior entrada propoñía a seguinte figura, na que aparece un octógono que tiña algo de curioso:

  

Non obtiven resposta no blogue, mais si en twitter:

Efectivamente o curioso do octógono, polo menos para min, é que tendo todos os lados iguais, non é regular debido a que os seus ángulos non son iguais, senón que hai dous tipos: os dos vértices N-O-S-L son menores cós dos vértices NO-SO-SE-NE.

Na seguinte figura podedes comparar a situación dos vértices do noso octógono(·) coa dos vértices(x) do octógono regular que comparte co noso o centro e a medida do lado:

  
Como actividade para levar á aula da ESO, o interesante sería pedir aos alumnos que atopasen distintos xeitos de amosar que o octógono non é regular. Ademais de adestrar a 'vista' xeométrica, a idea serviría tamén para practicar as demostracións informais: 'se fose regular, a propiedade ___ tería que cumprirse, mais non se cumpre, por tanto...'

Aínda no bacharelato, se houbese tempo, podería ampliarse a lista de métodos para demostrar que non é regular, co cálculo explícito das coordenadas das interseccións, o produto escalar, etc.